{
#define MAX_CLUSTERS 5
//read from file
vector< vector < float > > descriptor;
vector
ifstream f;
f.open("c:\\bayes2.txt");
while(f)
{
string str = "";
f>>str;
vector
size_t found = str.find(",");
while(found<100 && found>0)
{
string t = str.substr(0,found);
desc.push_back(strtod(t.c_str(), NULL));
str = str.substr(found+1);
found = str.find(",");
}
if(desc.size()>0)
{
descriptor.push_back(desc);
classes.push_back(strtod(str.c_str(), NULL));
}
}
f.close();
int k, cluster_count = MAX_CLUSTERS;
int i, sample_count = descriptor.size(),num_features = descriptor[0].size();
CvMat* points = cvCreateMat( sample_count, num_features, CV_32FC2 );
CvMat* clusters = cvCreateMat( sample_count, 1, CV_32SC1 );
for(int i=0;i
{
for(int j=0;j
CV_MAT_ELEM(*points,float,i,j)=descriptor[i][j];
}
cvKMeans2( points, cluster_count, clusters,
cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 200, 1.0 ));
for (int i=0; i
cout << "i*: " << i << " " << (clusters->data.i[i]) << " "<< endl;
}
cvReleaseMat( &points );
cvReleaseMat( &clusters );
}
No comments:
Post a Comment